
Large Field Visualization With Demand-Driven Calculation

Patrick J. Moran* Chris Henze t

MRJ Technology Solutions MRJ Technology Solutions

NASA Ames Research Center NASA Ames Research Center

pmoran@nas, nasa. gov chenze@nas •nasa. gov

Abstract

We present a system designed for the interactive definition and visu-
alization of fields derived from large data sets: the Demand-Driven

Wsualizer (DDV). The system allows the user to write arbitrary ex-

pressions to define new fields, and then apply a variety of visualiza-

tion techniques to the result. Expressions can include differential

operators and numerous other built-in functions, all of which are
evaluated at specific field locations completely on demand. The

payoff of following a demand-driven design philosophy throughout
becomes particularly evident when working with large time-series

data. where the costs of eager evaluation alternatives can be pro-

hibitive.

1 Introduction

hl man3,' sctentific visua'.ization applications, the data sets tend to
bc lar,_,e. In computational fluid dynamics ,'CFD). for example, data
caq bc on the order of one to hundreds of gigahytes in size. CFD

d.zta t?plcally come in the lbrm of meshes and fields defined in
terms of the meshes. A mesh represents the locations of a discrete
set of vertices in a domain and the organization of the vertices, for

instance to form hexahedral cells. In some cases a mesh may con-

sist of multiple, overlapping submeshes, referred to as zones. A

field has a mesh and a discrete set of nodes where quantities such as

density and momentum are represented. The location of the nodes

is specified by the mesh. Visualization techniques start with a field

and produce images which highlight various features in the domain.

Some techniques, such as basic implementations of isosurfaces or
volume rendering, require processing every cell or node in the field

in order to produce an image. Many other techniques require field

values only from small regions within the domain. For instance, a
v_sualization displaying a cutting plane passing through the domain

may require only that the field be sampled at points on the plane; or

perhaps one may only require data near an aircraft model surface in

order to apply LIC techniques [16] or to define contour cur,,es or

glyphs. Scenarios where an application touches only a small per-

centage of the whole data set are known as spurse traversal [5].
Data that varies _ith time tend to magnify the impact of sparse

tra_ ersal, since sparse access can occur in both space and time. Fur-
thcrmore, the implications of sparse traversal become more signifi-
cant with time-series data since the data sets tend to be larger than

in steady cases.
An important concept in computational fluid dynamics is that

of derived fields. A derived field is a field whose values are com-

puted in terms of one or more other fields. Derived fields come

into play m simulation applications since programs which solve for

field values typically compute only a particular set of fundamental
solution values from which all other quantities can be derived. A

typical set of fundamental solution variables is density, momentum

and energy. There are numerous derived fields that a scientist may

"Mail Stop T27A-2. Moffett Field. CA 94035

t Mail Stop T27A-I. Moffctt Field. ('A 94035

be interested in viewing. For instance. Table 1 lists the over 50

derived fields predefined by one CFD post-processing application:

PLOT3D [20]. Derived fields are particularly a challenge when

working with large data sets, since loading the fundamental solu-
tion values alone into main memory may already tax the resources

of one's workstation. Furthermore. even if one can afford the mem-

ory necessary to store a derived field, much of the computation ma3,

be" unused if the visualization does not access the whole field.

To address the challenges presented by large data tn general and

derived fields in particular, we present a visualization system based

on a calculator paradigm, the Demand-Driven Hsuali-er. Using

the system one can interacti_ely specify derived fields and apply
visualization techniques to those fields. The fields can be defined

by arbitrary expressions or by any of the standard PLOT3D deri_ed

fields, yet the evaluation of derived quantities is completely demand
driven (also known as lazy evaluation). At the user's option, the cal-

culator can also evaluate and store the derived value over the whole

field (eager evaluatio,), or cache lazily evaluated results at some
,nstance in time (la:.v b,a thrijty evaluation_ h)r better performance.

-%.tthe heart of the system is the Field Encapsulation Library, tFEL)

and u collection of visualization techniques known as the WsTech

Librar','. FEL supports the dynanuc construction and composition

of arbitrary derived fields, and evaluation by lazy or eager methods.

DDV provides the parsing to convert user expressions to FEL fields.
and an interface where the user can interactively choose visualiza-

tion techniques to apply to the results. The combination of the lazily
evaluated derived fields driven by visualization techniques provides

a powerful system for field analysis that is especially well suited for

large data needs.

71"he power of lazy evaluation becomes particularly apparent

when working with large time-series data sets. where the shortcom-

im, s of eager derived field evaluation--memor2,, consumption and

unused calculations--are multiplied by the number of time steps
in a simulation. Since typical simulations may have on the order of

hundreds of time steps, these drawbacks are significant. In the DDV

design field evaluation is completely driven by the visualization
techniques, both in space and in time. The system automatically

manages a working set of time steps, doing temporal interpolation

it" necessary.
In the follov, ing section we discuss some previous work related

to the Demand-Drive, 1_Tsualizer. Section 3 describes the ke)

demand-driven fields used by DDV. Section 4 gives an overvie_

of the interpreter language and the user interface of the system. In

Section 5 we present results demonstrating some of the advantages
of the DDV design. And finally, in Section 6 we conclude with

some final thoughts.

2 Related Work

Field and mesh objects in the De,,umd-Drive,f Visualizer "are pro-

vided by a C++ class library known as the Field Encapsulation Li-

brary (FEL). An initial version of FEL was presented at Visualiza-
tion "96 [41. Since then the library has been redesigned and corn-



density

stagnation density

pressure

stagnation pressure

pressure coefficient

pitot pressure

dynamic pressure

normalized temperature

normalized stagnation temperature

normalized enthalpy

normalized stagnation enthalpy

normalized internal energy

normalized stagnation energy

normalized kinetic energy

v velocity

velocity magnitude

speed of sound

divergence of velocity

y momentum

energy

entropy sl

y component of vorticity

vorticity magnitude

velocity cross vorticity magnitude

pressure gradient magnitude

velocity

momentum

velocity cross vorticity

density gradient

normalized density

normalized stagnation density

normalized pressure

normalized stagnation pressure

stagnation pressure coefficient

pitot pressure ratio

temperature

stagnation temperature

enthalpy

stagnation enthalpy

internal energy

stagnation energy

kinetic energy

u velocity

w velocity

mach number

cross flow velocity

x momentum

z momentum

entropy

x component of vorticity

z component of vorticity

swirl

helicity

density gradient magnitude

vorticity

perturbation velocity

pressure gradient

Table I: Derived fields predefined in PLOT3D [20].

pletely rewritten in order to support a much wider variety of mesh

and field types [10]. In particular, the features essential for large

data handling - derived fields, differential operator fields, demand-

driven evaluation, working set management of time-series data. and

demand-paged data from disk [5] - were not available in the origi-
nal version of FEE

The calculator paradigm used in DDV is a relatively intuitive and

easy-to-use interface for preparing data for visualization. FAST [3],

for example, is a CFD visualization system which features a calcu-

lator module. In FAST the user can specify arbitrary expressions,

including predefined fields such as those in Table I, and use the

resulting scalar and vector fields just as one would use the funda-

mental scalar and vector fields. The FAST calculator evaluates its

results eagerly: new fields require allocating memory and comput-

ing the derived value over the whole field. There is little support for

time-varying data in FAST.

An alternative paradigm for effectively specifying derivation

functions and visualization techniques is data-flow. AVS [ 19], IBM

Data Explorer [8. I]. IRIS Explorer [6], SCIRun [2, 12], and vtk

[ 14] are all examples of data-flow implementations. Data flow syS-

tems in general can be classified as either push model or pull model.

In a push model system, changes to one module cause it to push re-

sults downstream through the flow graph. AVS, Data Explorer and

IRIS Explorer are examples of push model systems. In apull model

design, a change to one module results in data requests propagating

upstream through the fiow graph, where the appropriate data are

processed and effectively pulled downstream. Vtk is an example of

a pull model design. In SCIRun modules can operate in either pull

mode or push mode [ 12 ].

For field visualizations where only a small subset of the field

data is required, push model data-flow suffers from the drawbacks

of eager evaluation: modules typically operate over the whole field

even though ultimately only a relatively small amount of data nccd

be Processed, and potentially a large amount of memory must be
allocated for buffering intermediate and final results. Memory us-
age problems can be ameliorated to a certain extent by more care-
ful memory management techniques, or by designing modules that
work with finer-grain units of data [ 18]. One solution to the waste-
ful computation problem is to introduce filter modules near the head
of the flow graph which extract subsets of the data. Unfortunately.
it can be difficult in some cases to anticipate what the appropri-
ate subset should be. For example, if the downstream module is a
particle tracer, then it may be hard to choose the subregion for com-
puting a derived velocity field, because one would have to know a
priori where the panicles would go. Time-series data adds another
dimension to the problem, since it may be difficult to anticipate
where temporally a module may need data. For instance, a streak-
line module may require data over a range of times, including times
intermediate to the given time steps (i.e.. where temporal interpo-
lation is necessary). One could also imagine scenarios where dif-
ferent modules in the same flow graph may need data at different
temporal points in the data set.

In contrast to push model designs, pull model designs offer the
potential of better performance in large data. sparse traversal sce-
narios. In a pull model system, each module can request just the
data it needs from the one or more modules immediately upstream.
For example, lmageVision [15] is a library for image processing
with a pull model design, where operations can be applied to small
tiles from much larger images. SCIRun [12] modules can request
field values from upstream modules at individual points in space.
Such pull model systems represent lazy evaluation embodied in a
data-flow setting: the flow graph defines the operations to be ap-
plied to the data. but the operations are executed only at specific
points or within specific regions, on demand.

Lazy evaluation techniques have also been employed in other

visualization systems for large data. The Unsteady Flow Anal,,'-



sis Toolkit (UFAT) [7] is a system designed specifically for par-

ticle tracing through large, time-series data. UFAT computes de-
rived field values on demand, hut only for the velocity field. Cox

and Ellsworth apply a demand-driven approach to the loading of
data into mare memory [5]. Using demand-paging techniques, they

show good performance with large CFD data sets in sparse traver-
sat scenarios, including cases where the fundamental solution data

for a single time step are larger than the main memory of the target
workstation.

3 FEL Fields

The Demand-Driven Visualizer builds upon five key field types in
the Field Encapsulation Library (FEL): time-series fields, derived
fields, differential operator fields, paged fields, and cached fields.

The FEL field classes are defined within a common class hierarchy,

and all fields inherit a standard interface defined by the FEL_field

and FEL_tyg_ed_field<T> classes at the top of the hierarchy.

The typed field class is written using C++ templates where the T

parameter specifies the field node type, e.g.. float for a scalar

field. Each field instance also has a mesh which specifies the loca-
tion and organization of the field node data, in FEL a field node is

located at each vertex in the mesh. The field interface provides stan-

dard methods for accessing field values. An application can request

node values at the vertices of a cell (at_cell), or at an arbitrary
physical position (at_phys_pos). FEL uses a general definition

for cell: vertices, edges, triangles, quadrilaterals, tetrahedra, and

hexahedra are all cells. Calls to at_cell do not require spatial

interpolation, calls to at_phys_pos do Field visualization appli-

cations v, rit_en in terms of the standard "'az'" calls v,ork with any
field subclass. FEL field classes include FEL_core_field<T>,

where the node data are stored in main memory, and other fields
where node data may be synthesized on demand. We describe the
five types of fields that figure most prominently in the Demand-

Driven Vis,,alizer design next.

3.1 Time-Series Fields

Large simulation data sets often come in the form of a time

series, where each time step represents a snapshot of the field
values m t_me. FEL represents time-series data via the class

FEL-time_series_field<T>. Time-series fields suplx_rt the

interface common to all FEL fields, thus one can build arbitrary

demand-dmen fields for time-varying data just as one can for

steady data. Visualization techniques request field values using the

same arguments as in the steady case: cells and physical positions.

Each argument contains a time representation, which is used by

FEL_z ime.zer i es_f -e ld< T> instances to select the appropri-

ate time step data. ur to select multiple time steps when temporal

interpolation is necessary. The requirement that the time compo-
nent of "'at" call arguments be set is the only difference for the

apphcauon programmer between using a steady or unsteady field.

FEL__ ime_series.f ield<T> instancesloaddatatota par-

titular time step on demand, using a callback function provided at

construction time Data are managed in memory using a working

set approach, where the time step_, are replaced when necessary us-

ing a least recently used policy. The size of the working set can be

set by the user: thus one can trade-off memory usage for a greater
likelihood that a desired time step will be in memory. The work-
ing set mechanism contained in FEL_t ime_series_f ield<T>

makes it easier to design applications, such as the Dema,d-Drive,

Vis.alizer. for time series data that are much larger than workstation
main memory.

3.2 Derived Fields

The derived field classes in FEL are all subclasses of

FEL.derived_field<T>. For an application programmen the

construction of a derived field requires arguments specifying the

fields to be derived from. and a mapping function to be used on de-
mand to produce derived values. All the fields must be based on the

same mesh. The Demand-Driven Visualizer utilizes several prede-
fined derived field classes, such as FlgL-magnir..ude_f £eld and

FEL_su.m_field, where the mapping functions are provided by
the library.

An important consequence of defining derived fields in terms of

the base class FEL_typed_f ield<T>, rather than a more specific
field type such as FEL_core_field<T>, is that derived fields can

be constructed in terms of other derived fields. In general one can

compose fields deriving from any field subclass. This also implies

that one can build chains of derived fields to arbitrary lengths. The

fact that one can construct new fields without needing to know the
specific subclass of the fields being derived from makes it easier to

build modular systems. For example, in the Demand-Driven Visual-

izer. derived fields can be composed incrementally as the interpreter
traverses an expression parse tree.

The relationships between derived fields can be described us-

ing a directed graph. An application builds derived fields node by

node. each newly constructed field adding a graph node and edges

from previous nodes to the new node. The graphs are acyclic, thus

derivation graphs are DAGs (directed acyclic graphs). The deriva-

tion graphs can also be thought of as flow graphs. Requests to a

particular graph node cause requests to propagate upstream through
the flow graph in a demand-pull manner. The data requests ate fine-

grain: at_cell calls require computation only at the nodes of a
cell.

3.3 Differential Operator Fields

FEL contains field classes which compute the divergence, gradient

or curl of an underlying field. Differential operator field values are

computed on demand, similar to derived fields. The library provides
classes for computing derivatives by first or second order methods'

Other differential operators, such as the scalar or vector Laplacian.

can also be represented in terms of the built-in operators. Temporal
derivatives are not yet implemented in FEE

As with derived fields, the field provided as a construction ar-

gument when building a differential operator field can be any
subclass of FEL_field. Thus. differential operator fields can

be composed into derivation chains just as derived fields are.
Second-order differential operator fields are unlike subclasses of

FgL_derived_f ield<T> in that they generate additional "'at"

calls on their underlying field in order to acquire a neighborhood of

field vahies surrounding a given argument. For instance, a request
for the gradient at a vertex requires field values at the adjacent ver-

tices m the mesh in order to compute the necessary difference _al-

ues. This expanding neighborhood of calls to fields upstream in
the derivation graph is transparent to the end user of a differential

operator field.

3.4 Paged Fields

With paged fiehls, the data are organized into page-sized blocks

within files on disk. Blot-ks are automatically loaded into memory.

on demand, by the paged field object. The pages are managed using

working set techniques. The loading and management of blocks is
transparent to the paged field user. The FEL_paged_field<T>

I Prescntly only first order methods are supported Ibr unstructured
meshes,



Operator Description
_add_

_div_

_mul_

__neg_

_sub_

cross

curll

curl2

divl

div2

dot

gradl

grad2

addition (infix +)
division (infix/)

multiplication (infix ")

negation (unary -)
subtraction (infix -)

cross product
first-order vector curl
second-order vector curl

first-order divergence

second-order divergence

dot product

first-order gradient
second-order gradient

mag vector magnitude

sqrC square root

Table 2: Field math operators defined in DDV.

class encapsulates the approach presented by Cox and Ellsworth at

Visualization "97 [5].

3.5 Cached Fields

The derived and differential operator fields in FEL follow a max-

imally lazy strategy. No derived values are computed in advance.
nor is any memory allocated for storing derived values. In cases

where an application repeatedly requests values at the same loca-

tions in a field, the maximally lazy approach may not be the best.

since the derived _alues would be recomputed at each request. On

the other hand. eager evaluation may _till not be the best choice,

particularly in sparse traversal situ:'ticns. FEL provides a hybrid

approach via a field class: FEL_cached_field<T>. A cached
field is constructed with another FEL field instance as an argument.

Cached fields allocate the memory to store the whole field (at one

instance in time) and mark each node with a special "unevaluated"
value. For each "at" call. a cached field checks whether the re-

quested node values have been evaluated already, and returns previ-

ously computed values if available. Node values requested for the

first time are computed as in the uncached case. and stored for fu-

ture reuse. The time component of the at: call argument is ignored.

thus it is inappropriate to use a cached field if the the underlying

fieid is time varying and the time specified in all the at: calls is not
the same.

in sparse traversal scenarios, cached fields provide amortized re-

sponse time close to that of eager fields, without the wasteful com-

putation drawback of eager evaluation. For demand-driven fields

that are expensive to evaluate, in particular differential operator

fields, cached fields can significantly improve performance when

one can afford the memory.

4 Implementation

The Demand-Driven Visualizer provides a graphical interface al-

lowing the user to interactively define and visualize arbitrary de-

rived fields. In thts section we provide a brief overview of the in-

terpreter language used to express such fields, and the rapid appli-

cation development language used to build the system -- Python.

4.1 The Language

The DDV interface includes an interpreter window where the user

can write and evaluate field expressions (see Figure I). The inter-

preter in DDV ts based on Python [9. 13 I, an interactive, interpreted

Data
SSLV

DW
FIB

Per Time Step # Steps Total
599 I 599

22 200 439 I

35 301 10652

Table 3: Data set sizes (MBytes).

language. A key feature of Python is its extensible, modular de-

sign. DDV provides an FEL module for Python which introduces

mesh and field types into the interpreter environment. The types

are first class, in other words, once the FEL module is imported

one can use the mesh and field types just as one uses other built-in

types. For instance, field types can be used in expressions, assign-

merit statements, or passed as arguments to user-defined routines.

Python parses expressions, using operator precedence similar that

in the C language, building a parse tree internally. Table 2 lists the
operators that can take field arguments in an FEL-extended Python.

The interpreter traverses the parse tree. building FEL fields as di-

rected by the tree. The demand-driven nature of FEL is essential
here: the interpreter can traverse and build at interactive rates, even

though the fields may be extremely large.

4.2 Visualization Techniques

Once one has defined fields within the interpreter environment, the

next step is to apply visualization techniques. DDV utilizes a C++

suite of visualization techniques known as the Wstech Librar?,." [I 7].

For each visualization technique. DDV provides a Python wrapper.

Within the interpreter environment one can construct visualization

instances and view the graphical output. Visualization instances can
also be constructed via a menu-driven interface, described next.

4.3 The Graphical User Interface

The graphical user interface (GUI) of the Demand-Driven Visual-

izer is illustrated in Figure I. The GUI is written using the Tkin-

t:er interface provided by Python. Tkinter is a wrapper around

Tcl/Tk [ I I]; like Tk. Tkint:er allows system designers to spec-

ify a graphical user interface in a windowing-system-independent

manner. The DDV GUI gives the user choice: novice users can

use the pull-down menus and buttons to construct and control vi-
sualization instances, while advanced users can use the interpreter

command line alone to control the application. Python provides a

universal language that supports both the specification of fields for

visualization and the command and control of the application.

5 Results

To demonstrate the effectiveness of the Demand-Driven Vis,alizer

with large data sets. we begin by quantifying the sparse data access

patterns typical of many visualization techniques. Next. we show

how the DDV exploits such patterns, avoiding the drawbacks of ea-

ger evaluation. The example derived fields and visualizations are

computed for three CFD data sets: the space shuttle launch vehi-
cle (SSLV), the delta wing (DW). and the F-18 fighter (FI8). The

SSLV data set is a steady simulation and has a mesh consisting

of 113 zones. The delta wing and F-18 data sets represent time-

varying single and multi-zone flow simulations, respectively. The

delta wing mesh also varies with time. the F-18 mesh does not. Ta-
ble 3 summaries the data set sizes.

A first step towards confirming that a lazy evaluation strategy

will be effecttve is to verify that many visualization techniques re-

quire accessing or "touching" only a small percentage of the field

values in a data set. Touching a small fractton of the data implies



Derived Field Data Eager Lazy Cached Lazy
Cons. Visu. Cons. Visu. Cons. Visu.

density SSLV 40.96 1.50 _ 1.75 .: 5.74
DW 0.90 O.15 _ O. 19 :7 0.28
FIB 4.89 0.20 t 0.25 ¢ 0.35

pressure SSLV 41.94 1.50 ¢ 1.73 _ 6.01
DW 0.96 0.15 _ 0.19 _ 0.28
FiB 4.99 0.20 _ 0.25 .: 0.35

dot (grad2 (pressure) , velocity) SSLV 286.64 1.49 _ I0.51 .: 10.46
DW 10.11 0.15 _: 1.22 _ 0.60

FI8 33.38 0.20 e 1.73 - 0.83

vor tic i ty-magni rude SSLV 341.05 1.50 _ 12.87 _ 11.06
DW 12.86 0.15 _ 1.47 -: 0.68
FIB 39.66 0.20 e 1.98 ,_ 0.92

Table 5: Construction and visualization timings (in seconds) for four derived fields, ordered by increasing expense to evaluate (times desig-
nated _ are less man 1 tmllisecond). In all cases the time to construct a lazy field and apply a visualization technique is much less than the

construction time alone for an eager field. The table also shows that caching can improve the performance of a visualization based on a lazy

field that is expensive to evaluate, but caching can hinder performance when evaluation is cheap.

Derived Field Data Touched
Visualization > 0 > 1

dens i ty SSLV 1.2 0.7
Cutting plane DW 3.2 1.8

F18 1.5 0.8

divergence_of_velocity SSLV 2.4 2.0

Cutting plane DW 6.2 4.8
FIB 3.0 2.3

velocit_r SSLV 0.I 0.I
Particle udvection I DW 1.1 0.7

[--b'q'g--- 0.4 0.3

Table 4: The percentages of nodes touched at least once. and more

than once. for typical cutting plane and streamline visualizations.
The numbers are typical of visualization algorithms with sparse
traversal behavior.

that a large fraction is untouched, and a large fraction untouched

implies a large amount of unused computation in an eager evalu-

ation design. We also measure how many field nodes are touched

more than once by the example visualization techniques. Cases

where many nodes are touched more than once suggest opportu-

nities where caching could make a significant improvement, since
more values would be reused. Table 4 summarizes the measure-

ments. The dens ity and divergence_of_velocity scalar

fields were visualized using a cutting plane sampling, and the ve-

1 3c i t:,, field wzk,, _ isualized via a particle advection technique.

The percentages ,_ht,w the relatively low number of nodes touched.

in m_,st cases less than 5% The exact statistics vary, with the posi-

tioning of the cutting plane or particle advection rake. For example.
with the SSLV data. a plane cutting between the shuttle and fuel

tank passes through several fine detail meshes, increasing the'touch

counts. The SSLV counts in Table 4 are for such a plane position.

The counts for the divergence_of_velocity field are for a

plane in the same position as for the density field. Note that the

touch counts for the divergence field are higher, since node values

Imm a neighborhood surrounding the plane are required. Note too

that the percentage of nodes touched more than once is over half the

percentage of nodes touched at all. suggesting that caching derived

results may improve performance.

The consequences of choosing a demand-driven design over an

eager-evaluation design become apparent when we consider the

t=mes required to compute derived field visualizations. Table 5 sum-

marizes the performance of four example fields using eager, lazy

and cached-lazy evaluation techniques. In order to focus on the

performance differences due to the different types of derived fields.
the timings are for a single visualization technique, sampling with

a cutting plane. The measurements were taken on an SGI Onyx2
workstation with one GByte of main memory and a 195MHz pro-
cessor clock rate. The four derived fields include a trivial derived

field, density, two commonly used non-trivial derived fields de-

fined by PLOT3D [201. and a custom defined field (pressure gradi-

ent dotted with velocity) sometimes used for feature detection.

To isolate the costs of eager evaluation, the timings are broken
do_ n iv.to construction and visualization contributions. In the case

of e,,ery field and data set combination ti.e, every row in the table).

the eager construction time dominates. In many cases the differ-

ence between the eager construction time and the visualization time

using a lazily evaluated field is over an order of magnitude. Thus

even in cases where the user desires multiple visualizations over the

same derived field, the total time consumed using a lazily evaluated

field would still be less than going the eager route. Note too th_tt by

taking the lazy evaluation approach the user also comes out ahead

in terms of memory consumption. Eager fields require significant

amounts of memory for storage. Furthermore. in some cases one

may have to use yet more memory, at least temporarily, to store the

intermediate fields used to compute a field defined in terms of other
derived fields. In cases where the fundamental solution values alone

consume much of the memory of one's workstation, not having to

store derived values may make the difference between reasonable

performance and thrashing.

Table 5 also lists the times to con,truct and utilize lazily eval-
uated fields where deri_,ed values are cached for reuse. The num-

bers show improvements when working ,,vith relatively expensive

derived fields, but a downgrade in performance _hen caching is

coupled with fields that are cheaper to evaluate. To decide whether

caching will be effective, one has to consider not only the field eval-

uation cost. but also the field access patterns of the visualization

technique, and the amount of memory available for caching. We

are continuing to study these trade-offs as we further optimize the

the performance of the field classes and visualization techniques.

6 Conclusion

We have presented the Demand-Driven Visualizer, a system de-

signed from the start to address large data visualization needs

through demand-dr(yen evaluation techniques. The system features

a general, flexible interpreter where one can define arbitrary de-

rived fields, yet still enjoy the advantages of lazy evaluation. Lazy



evaluation excels in sparse traversal scenarios, i.e., in cases where

an application touches a relatively small subset of the data. Many
visualization techniques, such as particle tracing or visualizations
defined on a surface within the domain, exhibit sparse traversal be-
havior. The issues addressed by a demand-driven design are es-
pecially pronounced with time-series data: eager evaluation with
unsteady data can lead to a great deal of unused computation and
memory consumption that can overwhelm most workstations.

It is important to note that key to the effectiveness of DDV are

several demand-driven design features working in concert. Using a
lazy evaluation model in some places and eager in others can lead to

a counterproductive design. For example, demand-paging has been

shown previously [5] to be an effective approach to large data visu-
alization, but demand-paging coupled with eager derived field eval-
uation would be self defeating. Eager derived fields would force ev-

ery page to be read in. and the memory consumption of the derived

field would often outweigh the savings gained with paging. Since
derived fields are often desired in simulation data visualization, it is

important to take an approach that preserves and extends the ben-
efits gained by other large data visualization techniques, both for
steady and unsteady flow.

Acknowledgements

This work was supported by NASA contract NAS2-14303. We

would like to thank Reynaldo Gomez, Neal Chaderjian and Ken

Gee for making the space shuttle launch vehicle, delta wing and
F-18 data sets available, respectively, for visualization studies. We

would also like to thank Guido van Rossum and the Python commu-
nity [131 for providing the application development language used
by the DDV.

References

[ I ] G. Abram and L. Treinish. An extended data-flow architecture

for a data analysis and visualization. In Proceedings of Wsu-

alization '95. pages 263-270. IEEE Computer Society Press,
1995.

[21 S. Parker amd D. Weinstein and C. Johnson. The SCIRun

computational steering software system. In E. Arge, A. Bru-

aset. and H. Langtangen, editors, Modern Software Tools for
Scientific Computing. Birkh_iuser, 1997.

[Sl

[91

[lO1

[111

[121

[13]

[141

[151

[16]

[17]

[18]

[19]

[201

B. Lucas et al. An architecture for a scientific visualization

system. In Proceedings of V'tsualization '92, pages 107-114.
IEEE Computer Society Press, 1992.

M. Lutz. Programming Python. O'Reilly & Associates, Inc.,
1996.

P. Moran. C. Henze, and D. Ellsworth. The FEL 2.2 user

guide. Technical report, National Aeronautics and Space Ad-
ministration. 1999. NASA Technical Memorandum.

J. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

S. Parker. The SCIRun Problem Solving Environment and
Computational Steering Software System. Phi) thesis, Uni-

versity of Utah, 1999. Feb. 1999draft.

Python. http://www.python.org.

W. Schroeder, K. Martin, and B. Lorensen. The Visualiza-

tion Toolkit: An Object-Oriented Approach to 3D Graphics.
Prentice-Hall Inc., New Jersey, second edition, 1997.

SGI. lmageVision Technical Report. Technical report, Silicon
Graphics Incorporated, 1995. ht:tp : //www. sgi. corn/-
Technology/ImageVis ion/techrepore.

H.-W. Shen and D. Kao. UFLIC: A line integral convolu-
tion algorithm for visualizing unsteady flows. In Proceedings

of Visualization "97, pages 317-322. IEEE Computer Society
Press. October 1997.

H.-W. Shen, T. Sandstrom, D. Kenwright, and L.-J. Chiang.
WsTech Library User and Programmer Guide. National Aero-

nautics and Space Administration, 1999.

D. Song and E. Golin. Fine-grain visualization in data flow

environments. In Proceedings of Visualization '93, pages
126-133, October 1993.

C. Upson et ai. The application visualization system: A
computational environment for scientific visualization. IEEE

Computer Graphics & Applications, 9(4):30-42, July 1989.

P. Walatka, P. Buning, L. Pierce, and P. Elson. PLOT3D

User's Manual. National Aeronautics and Space Adminis-
tration, July 1992. NASA Technical Memorandum 101067.

[3] G. Bancroft et al. FAST: A multi-processed environment for

visualization of computational fluid dynamics. In Proceedings

of Wsualization "90, pages 14-24. IEEE Computer Society
Press. October 1990.

[41 S. Bryson. D. Kenwright. and M. Gerald-Yamasaki. FEL: The

field encapsulation library. In Proceedings of Visualization

'96, pages 241-247. IEEE Computer Society Press, October
1996.

I51 M. Cox and D. Ellsworth. Application-controlled demand

paging for out-of-core visualization. In Proceedings of Wst,-

alizathm "97. pages 235-244. IEEE Computer Society Press.
October 1997.

(6] IRIS Explorer Center. htr..p : //www. nag. co. uk/Wel-
come_IEC, h_ml.

[71 D. Lane. UFAT: A particle tracer for time-dependent flow

fields. In Proceedings of Visualization "94, pages 257-264.
IEEE Computer Society Press. October 1994.



It _-_14mw VJ_dIBr

,': ::..'"_ ".'_:i'.... ............................ ,,




